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Application Review of Face Recognition Technology Based on Deep Learning Theory
L1 Lingli

Guangdong Justice Police Vocational Coliege
Abstract: This paper reviews the application of face recognition based on deep learning theory. The probiem that the traditional face recognition technoiogy is anal
yzed deep learning theory and research status quo are described,deep learning is important research direction in the development of face recognition technology is put f
orward deep belief network and convolutional neural network, the two most widely used models in the field of face recognition are introduced for face recognition technol
ogy based on the deep belief networks and facial recognition technology based on convolution neural network are discussed. Finally,face recognition technology. The de

velopment of face recognition technology based on deep learning is summarized and prospected. The research emphasis in the future is put forward.
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Using standardized serum creatinine values in the modification of diet in renal disease study 3,663
equation for estimating glomerular filtration rate 15 I3R

Levey, AS; Coresh, J; (...); Van Lente, F

Aug 15 2006 | ANNALS OF INTERNAL MEDICINE 145 (4), pp.247-254

2E
Background: Glomerular filtration rate (GFR) estimategfacilitate detection pf chronic kidney disease but require calibration of
the serum creatinine assay to the laboratory that deve - The 4-variable equation from the Modification of Diet

in Renal Disease (MDRD) Study has been reexpressed for use with a standardized assay. .. BTRES
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[ 26| Detecting faces|in images: A survey
B Yang, MH; Kriegman, DJ and Ahuja, N
a Jan 2002 | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 24 (1), pp.34-58

Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face
processing include face recognition, face tracking, pose estimation, and expression recognition, However, many reported
methods assume that the faces in an image or an image sequence have been identified and localized. To build fully automated
systems that analyze the information contained in face images, robust and efficient face detection algorithms are required.
Given a single image, the goal of face detection is to identify all image regions which contain a face regardless of its three-
dimensional position, orientation, and lighting conditions, Such a problem is challenging because faces a-re nonrigid and have
a high degree of variability in size, shape, color, and texture. Numerous techniques have been developed to detect faces in a
single image, and the purpose of this paper is to categorize and evaluate these algorithms. We also discuss relevant issues such
as data collection, evaluation metrics, and benchmarking. After analyzing these algorithms and identifying their limitations, we
conclude with several promising directions for future research.
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